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Abstract The Cosmic Microwave Background (CMB) is a diffuse radiation which
is contaminated by the radiation emitted by point sources. The precise knowledge of
CMB fluctuations can lead to a better knowledge of the chemistry at the early stages
of the Universe. In this work, we present an efficient algorithm, with a high degree of
parallelism, which can improve, from the computational point of view, the classical
approaches for detecting point sources in Cosmic Microwave Background maps. High
performance computing libraries and parallel computing techniques have allowed to
construct a portable, fast and numerically stable algorithm. To check the performance
of the new method, we have carried out several simulations resembling the observa-
tional data collected by the Low Frequency Instrument of the Planck satellite. The
sources are detected in their real positions.

Keywords Cosmic microwave background · Efficiency · Parallel algorithm

1 Introduction

In its early stages, after the nucleosynthesis epoch, the Universe can be considered
as a plasma formed by ions and electrons1 which interact with the radiation through

1 There is also dark matter which only interacts gravitationally with the radiation.
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scattering processes. When the Universe is about 380,000 years old, this plasma cools
down due to its expansion to low enough temperatures for the formation of atoms to
take place. Then, the first atoms, basically hydrogen and helium, are formed. This pro-
cess gives rise to the decoupling between radiation and matter and from that moment
on, the radiation propagates freely. This relic radiation is what we call the Cosmic
Microwave Background (CMB).

Thus, the CMB is a diffuse radiation which comes from the beginning of the Uni-
verse, carrying relevant information about its origin, evolution and structure. Since
its discovery in 1964 by Penzias and Wilson (see [17]), the CMB has been mea-
sured by instruments aboard balloons and satellites such as the NASA COBE satellite
(1992) ([19]), which detected the CMB fluctuations, i. e. spatial variations of the CMB
temperature on the celestial sphere, for the first time. In 2003, another NASA satel-
lite, WMAP, used these fluctuations to determine the cosmological parameters with
unprecedented accuracy (see [20]). In 2009, the ESA Planck satellite was launched
and nowadays it is gathering CMB data in order to improve the knowledge about our
Universe (see [1,21]).

There has been a great interest (see for instance [11,15,18]) in studying the effect
of primordial chemistry on the CMB fluctuations. Line absorption, photoionization
and photodissociation leave their imprint on the CMB power spectrum. A precise
detection of the CMB fluctuations is essential to analyze these phenomena and to put
constraints on the proportion of different molecules in the early Universe.

The CMB is contaminated by the radiation emitted by point sources, i. e. galaxies.
The detection of these point sources is vital for cleaning the radiation maps and also
from the astrophysical point of view (see [14,22]). The removal of point sources after
their detection allows a more precise analysis of the CMB fluctuations. The precise
knowledge of these fluctuations can lead to a better knowledge of the chemistry at the
early stages of the Universe.

In [5] a method for detecting point sources in CMB maps was presented. [5] uses
the Neville elimination, which has some computational advantages when working
with positive matrices, sign-regular matrices or other related types of matrices (see,
for example, [2–4,12]). However, this approach does not consider the structure of the
input matrix of CMB maps. These matrices are Toeplitz-block Toeplitz (see [23]).
Using the features provided for the structure of this kind of matrices it is possible
to obtain an efficient algorithm that reduces the computational cost of the algorithm
presented in [5].

Consequently, in this paper we present a new approach for detecting and removing
point sources in CMB maps. Even though they share the goal they are quite different,
the new method is computationally more efficient and uses standard strategies based
on the structure of the matrices to solve the problem (without resorting to Neville
elimination). The new method is applied to the detection of point sources in simulated
CMB maps. We carry out simulations which have the characteristics of the Low Fre-
quency Instrument (LFI) of the Planck satellite. These simulations show that the new
method performs very well at detecting point sources in the simulated maps.

It is worth to highlight that mathematical and computational methods presented
in this work can be applied to solve efficiently a large class of chemistry prob-
lems. The solution of the matrix equation and calculation of the matrix inverse of
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a square matrix are recurrent tasks handled by molecular modeling software (see [9]).
Moreover, in Quantum Chemistry, inversion of the overlap matrix between basis func-
tions is required to obtain the electronic energy and to perform charge density analysis.
Hence, the availability of more efficient direct methods for solving matrix equations
could be of particular interest.

The paper is organized as follows. In Sect. 2 we will present the problem descrip-
tion. An efficient algorithm for solving the problem described is presented in Sect. 3.
Finally, in Sects. 4 and 5 we describe the implementation details, the experimental
results achieved and the simulations carried out to check the goodness of the method.

2 Problem description

In this section we will present a typical method of point source detection in CMB maps.
In a region of the celestial sphere, we suppose to have a certain number n of radio

sources that can be considered as point-like objects if compared to the angular resolu-
tion of our instruments. This means that their actual size is smaller than our smallest
resolution cell. The emission of these sources is superimposed to the radiation f (x, y).
In our particular case this radiation is the CMB. A model for the emission as a function
of the position (x, y) is:

d̃(x, y) = f (x, y) +
n∑

α=1

aα δ(x − xα, y − yα)

where δ(x, y) is the 2D Dirac delta function, the pairs are the locations of the point
sources in our region of the celestial sphere, and aα are their intensities. We observe
this radiation through an instrument, with beam pattern b(x, y), and a sensor that adds
a random noise n(x, y) to the signal measured. Again, as a function of the position,
the output of our instrument is:

d(x, y) =
n∑

α=1

aα b(x − xα, y − yα) + ( f ∗ b)(x, y) + n(x, y) (1)

where the point sources and the diffuse radiation have been convolved with the beam.
In our application, we are interested in extracting the locations and the intensities of the
point sources. We thus assume that the intensities of the point sources are sufficiently
above the level of the rest of the signal, and consider the latter as just a disturbance
superimposed to the useful signal. If c(x, y) is the signal which does not come from
the point sources, model (1) becomes

d(x, y) =
n∑

α=1

aα b(x − xα, y − yα) + c(x, y). (2)

If our data set is a discrete map of N pixels, the above equation can easily be rewritten
in vector form, by letting d be the lexicographically ordered version of the discrete
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map d(x, y), a be the n-vector containing the positive source intensities aα, c the lex-
icographically ordered version of the discrete map, c(x, y), and φ be an N × n matrix
whose columns are the lexicographically ordered versions of n replicas of the map
b(x, y), each shifted on one of the source locations. Equation (2) thus becomes

d = φ a + c. (3)

Looking at Eqs. (2) and (3), we see that, if the goal is to find locations and intensities
of the point sources, our unknowns are the number n, the list of locations (xα, yα),
with α = 1, . . . n and the vector a. It is apparent that, once n and (xα, yα) are known,
matrix φ is perfectly determined. Let us then denote the list of source locations by the
n × 2 matrix R, containing all their coordinates. For the CMB we can assume that c is
a Gaussian random field with zero mean and known covariance ξ . Thus the likelihood
function is

p(d|n, R, a) = exp (−(d − φ a)tξ−1(d − φ a)/2). (4)

If we define M = φtξ−1φ, e = φtξ−1 d, the maximization of (4) leads us to the linear
system

Ma = e (5)

where M is a n × n matrix. The solution of this system will yield the maximum
likelihood estimator of the source intensities.

One problem with this approach is that, in principle, we know neither the number
n of point sources nor their positions. One standard way of dealing with this difficulty
is considering in (5) the local maxima of e and selecting as source positions these
local maxima above a certain threshold. A 5σ or 4σ threshold, with σ the standard
deviation of e, are typically used, since such high fluctuations rarely have their origin
in the CMB or the noise.

Finally, we have to find suitable methods to solve the system shown in (5), taking
into account that the number of sources can range from several to thousands depending
on the size of the region studied and also on the frequency analyzed.

The problem statement, as described above, involves the processing of large matri-
ces, if we want to cover a significant region of space. This can lead to excessive
computation times as well as loss of precision. In this work, we provide an efficient
solution with both aspects in mind: to get a reasonable run time and a numerically sta-
ble algorithm. To achieve both objectives, we resorted to the use of parallel computing
and high performance numerical libraries.

3 Efficient implementations

First, it should be noted that when we are building the system Ma = e we consider
that the matrices M, φ and ξ are of order N , while the vectors e and d have N rows.
Once vector e has been filtered by using the fixed threshold, matrix φ is set to N × n
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by choosing the adequate rows. Using the same notation as in [7], the matrices φ and
ξ can be generated from: the number of pixels (N ), the pixel size (PIX) and the full
width half maximum of the beam (FWHM).

To solve the system (5) is necessary to calculate the matrix M = φtξ−1φ, and the
vector e = φtξ−1 d, this should be done as efficiently as possible. A classical approach
could start by computing the inverse of ξ (see [7]) as the means for calculating the
vector e and the matrix M . Then, after applying a threshold process, the linear system
Ma = e can be solved. The computational cost of the classical approach implies
2N 3 + 2N 2 + 6Nn Flops. The cost of generating the matrices φ and ξ must be added
to the previous one.

However, from the numerical point of view, it should be desirable to obtain M and
e without calculating the inverse of ξ . Some other ideas should be used in order to
obtain an efficient algorithm. We have applied the following ones:

– Avoid unstable operations like computing inverses or multiplying large matrices.
Instead use orthogonal transformations if possible.

– Try to solve large scale problems, having in mind this:
– Use moderately the memory, avoiding unnecessary storage of data.
– Get a moderate execution time.

– Organize the algorithms in such a way that high performance sequential or parallel
libraries can be used.

With these ideas an efficient algorithm can be derived. As ξ ∈ RN×N is a sym-
metric positive definite matrix, Cholesky decomposition can be used to obtain a lower
triangular matrix L such that: ξ = L Lt ([13]). Hence, vector e can be expressed
as:

e = φtξ−1d = φt L−t L−1d = φt L−t c1 = φt c2 (6)

with c1 = L−1d and c2 = L−t c1.
Thus, vector e can be computed by performing a matrix-vector product, where

matrix φ ∈ RN×N . Observe that these operations involve a cost of (N 3)/6 + 4(N 2)

Flops.
As explained in the previous section, thresholding can be applied now to vector e,

obtaining those positions with a value higher than 4σ . This is equivalent to obtain a
selection matrix P ∈ RN×n , which consists of those columns of the identity matrix
with a ‘1’ in the position determined by the thresholding of vector e, and obtain
ẽ = Pt e = (φP)t c2.

Now, in order to construct the part of matrix M which is involved in the threshold
linear system, we construct

M̃ = Pt M P = (φP)tξ−1(φP) = φ̃t L−t L−1φ̃, (7)

with φ̃ = φP ∈ RN×n .
Thus, M̃ = (L−1φ̃)t (L−1φ̃) = Zt Z , with Z = L−1φ̃. If we compute the Q R

decomposition of Z = Q R, with Q ∈ RN×N , orthogonal, and R ∈ RN×n , upper
triangular, M̃ = Zt Z = (Q R)t (Q R) = Rt R and linear system Ma = e can be
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expressed as (Rt R)a = φ̃t c2. Thus, vector a can be computed by solving the triangu-
lar linear systems Rt y = φ̃t c2 and Ra = y.

The construction of M̃ involves (N 2)n + 2n2(N − n/3) Flops and the solution of
the final linear systems involves 2n2 Flops.

These ideas can be summarized in the following algorithm:

Algorithm CMB

Input N , PIX, FWHM, d ∈ RN×1

Step 1. Generate matrices φ and ξ

Step 2. Compute ξ = L Lt (Cholesky factorization)
Step 3. Obtain e:

Solve L ∗ c1 = d and Lt c2 = c1

Compute e = φt c2

Step 4. Calculate the positions of e that are above the threshold (e(i) ≥ 4σ, e → ẽ)
Step 5. Get the columns of φ associated with the indices from Step 3: φ → φ̃

Step 6. Solve L Z = φ̃

Step 7. Compute the Q R factorization of Z (Z = Q R)
Step 8. Solve the triangular systems: Rt y = ẽ, Ra = y

Output a

Finally, it should be noted that considering the high number of data and operations
involved in the resolution of the problem, the use of parallel strategies is particularly
suitable.

4 Implementation details and experimental results

We have implemented the two algorithms described in the previous section: We call
Classical Algorithm to the one that constructs the matrix M and the vector e starting
from the inverse of ξ . In turn, the CMB Algorithm avoids the inverse computation and
uses matrix decomposition techniques.

In both algorithms, OpenMP ([8]) is used when possible. OpenMP is an API that
supports multi-platform shared memory multiprocessing programming techniques on
most processor architectures and operating systems. Besides, arithmetic intensive
operations of the algorithms have been addressed through calls to the appropriate
subroutines of LAPACK [6], i.e. Cholesky factorization with DPOTRF, QR factoriza-
tion with DGEQRF and so on.

The testbed system used in the experimentation is composed by one Intel Xeon
E5530 Quad-Core processors (4 cores) running at 2.40 GHz with Ubuntu Linux
distro (10.04.2 LTS) as operating system. The high performance implementation of
LAPACK was provided by Intel MKL (Mathematical Kernel Library, version 10.3).
Finally, experiments reported in this section employ ieee 754 double precision arith-
metic.

Coming back to the algorithm described in Sect. 3, we can observe an initial step
which is the same as for the Classical: Step 1. Generate matrices φ and ξ . Despite this
step can be considered as an initialization step, it is computationally an important step
as we can see in Table 1.

123



416 J Math Chem (2012) 50:410–420

Table 1 Time (s) of an initial
implementation of the algorithm
described in Sect. 3 when
N = 214 and standard values of
P I X, FW H M and d are used

Step/cores 1 4

Step 1 3.36e + 03 1.47e + 03

Step 2 1.49e + 02 3.86e + 01

Step 3 4.30e − 01 2.79e − 01

Step 4 1.73e − 04 1.79e − 04

Step 5 2.48e − 03 2.54e − 03

Step 6 1.47e + 00 8.72e − 01

Step 7 2.27e − 02 1.61e − 02

Step 8 4.01e − 05 4.70e − 05

However, the matrices φ and ξ that appear in the problem are symmetric Toeplitz-
block Toeplitz matrices with symmetric blocks. A block matriz A whose (i, j)th block
Ai j is a function of (i − j) is called block Topelitz matrix (see [23]). When Ai j is
itself a Toeplitz matrix, A is called Toeplitz-block Toeplitz matrix. Using the features
provided for this structure we have obtained an efficient algorithm that greatly reduces
the computational cost of the algorithm describes in Sect. 3.

Figure 1 shows the execution times obtained for the algorithms considered. It shows
that the calculated times are much higher for the Classical algorithm. For example, if
N is equal to 214 (16,384) the time of the Classical algorithm is more than 47 times
that of the CMB algorithm when the number of cores is greater than one (these results
can also be seen in Table 2).

The time of CMB algorithm is small. This suggests the possibility of studying wider
regions of space which involves the processing of larger matrices at an affordable exe-
cution time by using a larger number of cores. In addition, the technique used in the
CMB algorithm is an efficient alternative that can be also applied in more complex
computational methods such as Bayesian methods proposed in [7].

5 Simulations

In order to check the performance of the new method, we have carried out several sim-
ulations resembling the observational data collected by the LFI of the Planck satellite.

We have simulated data with the characteristics of the 30 GHz channel of the Planck
satellite. Our simulations are flat patches of N = 128 × 128 pixels, so that the size of
each patch is 14.66 × 14.66 degrees. Each simulated patch consists of several com-
ponents: a map of point sources, distributed in flux according to the De Zotti counts
model, (see [10]), a CMB map generated by using the power spectrum which produces
the best fit to the WMAP 5-year maps, (see [16]) and the instrumental noise.

The CMB map and the point source map are added and convolved with the obser-
vational beam, finally the noise is included to create the final input map. If we use the
terminology of Sect. 2, d is the final map, in vector form, aα means the point source
fluxes in the point source map, b is the beam pattern and c the noise plus CMB, i.e
the contamination which hampers our detection of the sources. But for the Galactic
foregrounds, which we do not include in our simulations for the sake of simplicity, we
have considered the relevant components of the observational data.
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Fig. 1 Execution time for the classical and CMB algorithms

Table 2 Time (s) for N = 214

Algorithm/cores 1 2 3 4

Classical 5.71e + 03 3.71e + 03 2.67e + 03 2.07e + 03

CMB 1.54e + 02 7.90e + 01 5.32e + 01 4.09e + 01

In order to solve our problem, we also need to know the matrix φ, an N × N matrix
which incorporates the information about the observational beam, and the covariance
matrix ξ , which is computed by using the power spectrum of the WMAP 5-year maps,
(see [16]). Since we can compute both matrices, we have all the elements to solve our
problem in an efficient way.
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Fig. 2 This figure shows two simulations at 30 GHz. In the upper panel simulations of point sources and
in the lower the same simulations including the CMB plus noise

In the following, we comment the results of two of our simulations (see Fig. 2),
which are representative of the performance of the method. In our first simulation,
when we use a 4σ threshold for e, we are able to detect 2 point sources in our map.
The first one has a detected flux of 1.25 Jy2 and is found in the pixel (8,16) of the
image. Its real position is (8,16) and its real flux is 1.49 Jy. The second source is
detected at (59,10) with a flux of 1.13 Jy. Its real flux is 0.75 Jy and its real position
(60,10). Similar results are obtained with the classical method, but with a slower and
less efficient technique. Note that the positions are recovered very well and the fluxes
with an error due not to the computational method but to the random character of the
CMB and the noise: we do not know the particular values of the contamination at
each pixel, just the statistical properties of noise and CMB, both are Gaussian random
fields with known covariance and we exploit this knowledge by using a maximum
likelihood estimator, as explained in Sect. 2.

In our second simulation, we detect above a 4σ level three sources with detected
fluxes 3.75, 3.45 and 1.34 Jy respectively. Their real fluxes are 4.08, 3.31 and 1.19 Jy.
In this case, the sources are detected in their real positions.

We have thus checked that our technique has a good performance, with regard to
the position determination and the flux estimation of the sources.

2 The Jansky, Jy, is the standard unit of flux in Radioastronomy. 1 Jy = 10−26W/(m2Hz).
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6 Concluding remarks

We have proposed an efficient algorithm, with a high degree of parallelism that can
replace advantageously the classical approaches.

As main advantages of algorithm CMB we can cite:

– It allows to confront large scale problems with a reasonable execution time, opti-
mizing the memory usage.

– Its parallelization is very efficient; near-optimal speedups have been obtained in
many cases.

– The constructed algorithm is scalable in the sense that execution time can be main-
tained, by increasing the problem size and the number of cores at the same rate.

– The use of high-performance libraries and the organization of the algorithm guar-
antees numerical stability and portability.

– Techniques developed can also be applied to the resolution of Bayesian methods
described in [7], thus completing an important analysis tool.

– As explained in Sect. 5, we have used our new method to detect point sources in
simulated CMB maps. These maps resemble the real ones surveyed by the LFI
(Planck satellite). The new technique allows us to find the simulated point sources
in their positions and to estimate their corresponding fluxes. This can be done in a
very efficient and fast way. It would be very interesting to explore in the future the
application of the method to more complex detection strategies, such as Bayesian
techniques.

– An accurate detection and flux determination of point sources is an essential step
in the study of the CMB fluctuations. These fluctuations are fundamental data to
calculate the cosmological parameters and also to study the chemistry of the early
Universe.
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